Human babesiosis: an emerging tick-borne disease

Int J Parasitol. 2000 Nov;30(12-13):1323-37. doi: 10.1016/s0020-7519(00)00137-5.

Abstract

Human babesiosis is an important emerging tick-borne disease. Babesia divergens, a parasite of cattle, has been implicated as the most common agent of human babesiosis in Europe, causing severe disease in splenectomized individuals. In the US, Babesia microti, a babesial parasite of small mammals, has been the cause of over 300 cases of human babesiosis since 1969, resulting in mild to severe disease, even in non-splenectomised patients. Changing ecology has contributed greatly to the increase and expansion of human babesiosis in the US. A relatively recently described babesial parasite, the WA1-type, has been shown to be the causative agent in seven human cases in the western US. This parasite is closely related to babesial parasites isolated from large wild ungulates in California. Like B. microti, WA1-type parasites cause mild to severe disease and the immunopathogenesis of these parasites is distinctly different from each other in experimental infections of hamsters and mice. A B. divergens-like parasite was also identified as the cause of a fatal human babesiosis case in Missouri. Isolated cases of human babesisosis have been described in Africa and Mexico, but the causative parasites were not well characterized. Standard diagnostic techniques for human infection, such as examination of Giemsa-stained thin blood smears and serology, have been complemented with molecular techniques, such as PCR. Current treatment for babesiosis is focused on a regimen of clindamycin and quinine, although new drugs have shown promise. Prevention of infection relies on self-monitoring for the presence of ticks and, in some locations, targeted application of pesticides to decrease tick abundance. Identification of human infection with Babesia spp. will probably increase as physicians and the public become more aware of the disease, as people live and recreate in rural tick-infested areas, and as the numbers of immunocompromised individuals increase.

Publication types

  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Animals
  • Babesia / classification
  • Babesia / isolation & purification
  • Babesiosis / epidemiology*
  • Humans
  • Ticks*